e [Cb:Devel] Extreme Systems Administration Page 1 of 3

[Cb:Devel] Extreme Systems Administration

Ken MacLeod devell@casbah.org
10 Jan 2001 13:19:10 -0600

» Next message: [Cb:Devel] Orchard/C goes Alphal
« Messages sorted by: [date | [thread] [subject] [author |

[Ca'd from a post I sent to c.s.xp.}

We're getting ready to deliver several packages into a new production
environment. I was wondering how others apply XP values, principles,
and practices into operations/sysadmin.

T have an evenly split background between development and sysadmin,
and was very heavy on the admin side for seven years up until two

years ago. 1've developed several practices and rules that T belisve
share many XP values and principles and mesh well with existing XP
practices.

SysAdmin development 1s still develcopment

When developing code by or for SAg or production systems, ycu're’ -
developing code. All Extreme Programming practices apply. T (T

Maintain minimal-delta systems

Froduction systems should have the bare minimum of differences from
the vendor's base install. They should be summarizable on one sheetl
of paper, the manifest. A manifest should list the base install,
the add-on packages installed, the files used from source control
for configuration, and any remaining hand-made changes. Per-system
manual changes should be kept to a strict minimum. Use automated
installs whereever possibkle. '

Refactor mercilessly (applisd to systems)

CoutL_hJQ ﬂN}iJs

@ Manuél changes elzre r;igrgted to ;ource contr‘ol, COommon Configuratj_on&_?,w = con ﬁ
and implementation 1s migrated into releasable packages. Automate 7 ! N
manual procedures. Goals: keep the system manifest simple and keep o 2"££:3k“‘kj

"work effort™ off production systems. Pﬁhj\1—f7k = o
Use production manifests to bulld test systems ttﬁjﬁus ®
Test systems should be rebuilt regularly (every or every few te , =)
iterations) using production manifests. This "tests” the productionofézét;?z?pa.
manifest and keeps the test systems in-sync with the production I
systems. Use test systems to aid in refactoring production kJMGA—&d"V£hkfo
manifests. Use automated installs to make rebuilding test systems hJ\Q_JﬂLwé? _

faster and easier.
Keep systems up-to-date

Apply security and vendor updates regularly. Give updates a chance
to "settle" before applying them. Use test systems to "age" updates
before applying tc production systems. Keep up with major product
and 08 updates, they're easier when they're gradual. Use test
systems to do parallel development, upcating a test system with a
new 0S/product and identifying any issues with existing systems.

http://www.casbah.org/pipetmail/devel/ Week-of-Mon-20010108/ 000760.html 09/10/2003

Cb:Devel] Extreme Systems Administration Page 2 of 3

Maintain operations procedures

Develop and factor cemmon operations and maintenance procedures, as
checklists or outlines. For less-often used procedures, note the
last time it was used. Double-check unfamiliar or older procedures
before they're performed. The default procedure {(typically used
only in emergencies) 1s to leog every step you do.

Pair cperations

11 access to production systems, outside of routine backup or
job-control, is performed as pairs. Avoid using significant
privileges (Unix's root) unless absclutely necessary. Factor out
and wrap priveleged operations whenever possible (Unix's sudo] .

Keep access to preduction systems to a minimuam

At any given time, a production system should work indefinitely
without intervention or support. Access te prcductlon systems
should always be for a deocumented procedure (operations or
maintenance). Fnable and extend remote status tools to provide
production status without requiring access. Use test systems and
source control for checking how things are installed or working.

Use operational tests

Create (or require) operational tests that verify that a systém,
product, or package 1s working as expected. Both on-iine

(non-destructive, accessibility) and off-line (thorcugh) testing b
should be used. ;i

Seperate production and development database activities

Database schemas and updates are delivered with packages. In-place
database updates are repeatably testable and verifiable on test
systems, prior to release on production systems. Tuning information
is maintained across updates (either through feedback to source code
or externally merged)].

Keep the developer, test, production loop small

The operations group is a customer of development. Administrators
are co-developers for many tasks. Every iteration release should be
installed on a test system. Refactor installation processes and
keep as simple as possible. Minimal production support is a ceoding
standard.

Use package management extensively

Require vendors and off-site developers to cdeliver using your
system's packaging tools. Package any products downloaded or
developed locally. Merge common, infrequently changead packages into
your auto-install or vendor media.

Parcel your time

Prioritize operations and maintenance over development, refactoring
over new development. Spread non-weekly tasks so that several occur
every week. Keep a record of time spent on tasks for future

scheduling. Group related operations together, and complete them as

a whole (rather than individual ticket-tracking). Rotate "on-call”
as a daily or weekly task, so that other's tasks can be completed
uninterrupted (ie. avoid mixing on-call with other tasks). "Tasks"

hitp://www.casbah.org/pipermail/devel/ Week-of-Mon-200101 08/000760.html 09/10/2003

[Ch:Devel] Extreme Systems Administration Page 3 of 3

are the primary internal unit of staff load, with respect to team
valocity.

Communicate schedules and policies

Keep your schedules and policies in an open place (web page or
bulletin beard). Let customers {internal users, stakeholders, and
developers) know where vou're spending your time. Let them know
which tasks are fast-tracked (common operations) and which require
prioritization and queuing (development), let them know what your
quevce is. Let customers prioritize gueued tasks among themselves.

Test disaster recovery by swapping in new production systems

A test system built accerding to the manifest of a production system
needs only the producticn machine's data to replace that system. Do
that at least cnce a year for every production system.

Keep systems modular

Develop sub-systems (packages, databases, resources, configuration)
so that they can be moved from one system to another easily.

: Migrating to a new version of a system is more easily done one

@ sub-system at a time.

Migrating to Extreme Systems Administration

Seperate your work effort into "old style" and "new style." 'Begin_j
by bringing in new systems in the "new style.” Migrate Sub-systémé¥é
to the new systems one at a time, refactoring them in the new style . °
when doing so. Pay particular attention to simplification and o
refactoring at this point, it will pay off greatly. Rctate staff
through old-style and new-style efforts until the new-style is
completely in place -- don't share tasks betwsen old-style and
new—-style, Take it slowly, generally no more than one or two
sub-systems per iteration, for least interruption and greatest
reflection time.

I never really had the framework (planning, management, communication,
feedback) for these practices until I was introduced te XP. The two
mesh so incredibly well. I pelieve this is an excellent start for a
page on the XP Wiki if people are interested. I'd like to hear from
others what their experience has been.

-— Ken

o Next message: [Ch:Devel] Orchard/C goes Alpha!
o Messages sorted by: [date | [thread] [subject | [author]

http://www.casbah.org/pipermail/devel/ Week-of-Mon-20010108/000760.html 09/10/2003

